Dichotomy of Hofer Growth Type on the 2-Sphere

Ben Feuerstein, M.Sc. Student, TAU.

June 2024

All work discussed was done under the supervision of my advisors, Prof. Leonid Polterovich and Prof. Lev Buhovsky (TAU), together with Prof. Egor Shelukhin (Universite de Montreal).

A symplectic manifold is a smooth manifold M with a symplectic 2-form ω . For our purpose, ω is a tool which turns smooth timed functions $H: M \times \mathbb{R} \to \mathbb{R}$, also called Hamiltonians, to a 1-parameter family of diffeomorphisms

$$\varphi_H: M \times \mathbb{R} \to M, \ \varphi_H^t(x) := \varphi_H(x, t), \ \varphi_H^0 = \mathbb{1}_M,$$

by solving the Hamiltonian flow ODE. The group of Hamiltonian Diffeomorphisms is the set of time-1 flows generated by some Hamiltonian, denoted by

$$\operatorname{Ham}(M,\omega) := \left\{ \varphi_H^1 | H : M \times \mathbb{R} \to \mathbb{R} \right\}.$$

This is a group by composition. On this group, one can define the bi-invariant Hofer metric as

$$d_H(\mathbb{1},\varphi):=\inf_H\int_0^1 \|H_t\|_{L_\infty}dt,$$

where the infimum is taken over all Hamiltonians H (with some normalization condition) such that $\varphi = \varphi_H^1$. The distance between two elements $\varphi, \psi \in \text{Ham}(M, \omega)$ is given by $d_H(\varphi, \psi) := d_H(\mathbb{1}, \varphi^{-1}\psi)$.

There is much to be said about this metric space $(\operatorname{Ham}(M, \omega), d_H)$, and some of its most basic properties are highly non-trivial, to the extent that even proving it is non-degenerate is an involved process which requires the development of more machinery - even the fundamental group of this space is unknown, except for a small collection of specific manifolds. One particular unknown is the "Dichotomy of Asymptotic Growth Type Conjecture" which is the following: Take some $H \in C^{\infty}(M)$, Hamiltonian independent of time. One can show that for every $t, \varphi_{H}^{t} \in \operatorname{Ham}(M, \omega)$, and that the limit $\overline{d}(H) := \lim_{t \to \infty} \frac{d_{H}(\mathbb{1}, \varphi_{H}^{t})}{t} \geq 0$ exists and is finite. The conjecture claims that $\overline{d}(H) = 0$ iff $d_{H}(\mathbb{1}, \varphi_{H}^{t})$ is bounded, i.e. that $t \mapsto d_{H}(\mathbb{1}, \varphi_{H}^{t})$ either grows linearly, or is bounded.

We prove the Dichotomy Conjecture for the case of $M = \mathbb{S}^2$ by introducing the notion of a "Symmetrization" of a Hamiltonian, which is a map $\Sigma : C^{\infty}(\mathbb{S}^2) \to C^{\infty}(\mathbb{S}^2)$ which takes some Hamiltonian, and returns a Hamiltonian which is a function of the height, symmetric about the origin. Using this tool, we managed to prove that

$$\overline{d}(H) = 0 \iff \Sigma(H) \equiv 0 \iff \forall t, \quad d_H(\mathbb{1}, \varphi_H^t) \le 11 \operatorname{Area}(\mathbb{S}^2).$$

Note this result is stronger than the Dichotomy Conjecture. Namely, it shows Hamiltonians with non-linear growth are universally bounded. We call this fact "Enhanced Dichotomy".

During the talk, I plan on giving a more in-depth introduction to $\operatorname{Ham}(M, \omega)$ and d_H , give a partial definition of Σ , and discuss our proof of the "Enhanced Dichotomy".