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A symplectic manifold is a smooth manifold 𝑀 with a symplectic 2-form 𝜔.
For our purpose, 𝜔 is a tool which turns smooth timed functions 𝐻 ∶ 𝑀 ×R → R,
also called Hamiltonians, to a 1-parameter family of diffeomorphisms

𝜑𝐻 ∶ 𝑀 × R → 𝑀, 𝜑𝑡
𝐻(𝑥) ∶= 𝜑𝐻(𝑥, 𝑡), 𝜑0

𝐻 = 1𝑀 ,

by solving the Hamiltonian flow ODE. The group of Hamiltonian Diffeomor-
phisms is the set of time-1 flows generated by some Hamiltonian, denoted by

Ham(𝑀, 𝜔) ∶= {𝜑1
𝐻 |𝐻 ∶ 𝑀 × R → R} .

This is a group by composition. On this group, one can define the bi-invariant
Hofer metric as

𝑑𝐻(1, 𝜑) ∶= inf
𝐻

∫
1

0
‖𝐻𝑡‖𝐿∞

𝑑𝑡,

where the infimum is taken over all Hamiltonians 𝐻 (with some normaliza-
tion condition) such that 𝜑 = 𝜑1

𝐻 . The distance between two elements 𝜑, 𝜓 ∈
Ham(𝑀, 𝜔) is given by 𝑑𝐻(𝜑, 𝜓) ∶= 𝑑𝐻(1, 𝜑−1𝜓).

There is much to be said about this metric space (Ham(𝑀, 𝜔), 𝑑𝐻), and some
of its most basic properties are highly non-trivial, to the extent that even proving
it is non-degenerate is an involved process which requires the development of
more machinery - even the fundamental group of this space is unknown, except
for a small collection of specific manifolds.
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One particular unknown is the ”Dichotomy of Asymptotic Growth Type
Conjecture” which is the following: Take some 𝐻 ∈ 𝐶∞(𝑀), Hamiltonian inde-
pendent of time. One can show that for every 𝑡, 𝜑𝑡

𝐻 ∈ Ham(𝑀, 𝜔), and that the
limit 𝑑(𝐻) ∶= lim𝑡→∞

𝑑𝐻(1,𝜑𝑡
𝐻)

𝑡 ≥ 0 exists and is finite. The conjecture claims
that 𝑑(𝐻) = 0 iff 𝑑𝐻(1, 𝜑𝑡

𝐻) is bounded, i.e. that 𝑡 ↦ 𝑑𝐻(1, 𝜑𝑡
𝐻) either grows

linearly, or is bounded.

We prove the Dichotomy Conjecture for the case of 𝑀 = S2 by intro-
ducing the notion of a ”Symmetrization” of a Hamiltonian, which is a map
Σ ∶ 𝐶∞(S2) → 𝐶∞(S2) which takes some Hamiltonian, and returns a Hamilto-
nian which is a function of the height, symmetric about the origin. Using this
tool, we managed to prove that

𝑑(𝐻) = 0 ⟺ Σ(𝐻) ≡ 0 ⟺ ∀𝑡, 𝑑𝐻(1, 𝜑𝑡
𝐻) ≤ 11 Area(S2).

Note this result is stronger than the Dichotomy Conjecture. Namely, it
shows Hamiltonians with non-linear growth are universally bounded. We call
this fact ”Enhanced Dichotomy”.

During the talk, I plan on giving a more in-depth introduction to Ham(𝑀, 𝜔)
and 𝑑𝐻 , give a partial definition of Σ, and discuss our proof of the ”Enhanced
Dichotomy”.
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